Intelligent System - HW3

Vinh T. Nguyen. Email: vinh.nguyen@ttu.edu

October 12, 2018

1 Question 1

Given the signature $O = \{a\}, F = \{f\}, P = \{p\}$ and $V = \{X\}$, specify which of the following are terms, atom, literals, or none.

(a) a. (b)
$$\neg a$$
 (c) X (d) Y
(e) $f(X)$ (f) $f(f(X))$ (g) $p(a)$ (h) $p(\neg a)$
(i) $\neg p(a)$

Table 1: Specifying which of the following are terms, atoms, literals, and none

Answer: Terms:= $\{a, X, f(X), f(f(X))\}$ Atoms:= $\{p(a)\}$ Literals:= $\{p(a), \neg p(a)\}$ None:= $\{\neg a, Y, p(\neg a)\}$

2 Question 2

Given the signature $O = \{a, b\}, F = \{\}, P = \{p, q\}$ and $V = \{X, Y\}$, what is the grounding of the following program.

p(X, Y) := -q(Y, X). **Answer:** p(a, a) := -q(a, a). % when X = a, Y = a % p(a, b) := -q(b, a). % when X = a, Y = b % p(b, a) := -q(a, b). % when X = b, Y = a % p(b, b) := -q(b, b). % when X = b, Y = b %

3 Question 3

(Satisfaction of rules) Given a rule r and S where

 $r \text{ is } q(c) \text{ or } q(a) : -p(a), \neg s(b), \text{ not } s(a), \text{ and}$ $S = \{ \neg q(c), p(a), \neg s(b) \},$

does S satisfy r? Give detailed explanation.

Answer:

First we check the body of the rule if it is satisfied by S. The body consists of three literals:

 $p(a), \neg s(b), \text{ not } s(a).$

The first two $(p(a), \neg s(b))$ are satisfied by clause 1 $(l \text{ if } l \in S)$.

The later *not* s(a) is satisfied by clause 2 (not l if $l \notin S$).

Thus the body of the rule is satisfied by S. By clause 5 (rule r if, whenever S satisfies r's body, it satisfies r's head), the head must also be satisfied. However, neither q(c) or q(a) is in S by clause 3 (l_1 or ... or l_n if for some $1 \le i \le n$, $li \in S$). Hence, the rule r is not satisfied by S.

4 Question 4

(Answer set definitions) Explain, in a precise manner, that $S = \{p(b)\}\$ is an answer set of the following program:

p(a) : -not p(b). % If p(b) does not belong to your set of beliefs, then p(a) must.%

p(b) : -not p(a). % If p(a) does not belong to your set of beliefs, then p(b) must.%

This answer set supports the second rule, since p(a) is not in the set then p(b) must be in the set.

5 Question 5

State the definition of a program **entails** a literal. A program Π entails a literal l ($\Pi \mid = l$) if l belongs to all answer sets of Π

State the definition of **answer** to a disjunctive query to a program: The answer to a ground disjunctive query, l_1 or ... or l_n , where $n \ge 1$, is

- The answer is yes if there exists at least i such that Π | = l_i. In other words, there is at least one literal i belongs to all answer set of Π.
- The answer is **no** if Π entails all negation of literals ($\Pi \mid = \{\overline{l_1}, ..., \overline{l_n}\}$). In other words, all negation of literals belong to all answer set of Π .
- unknown otherwise

Answer:

6 Question 6

(Query Answering) Assume a program Π has one answer set $\{p(a), \neg q(a)\}$. What is the answer to the following queries?

- (1) ? p(a). The answer is **Yes**.
- (2) ? q(a). The answer is No.
- (3) ? $p(a) \wedge q(a)$. The answer is No.
- (4) ? p(a) or q(a). The answer is **Yes**
- (5) ? p(X). The answer is X = a.

If Π has one more answer set $\{p(a), q(a)\}$, what would be the answer for the queries above?

- (1) ? p(a). The answer is **Yes**.
- (2) ? q(a). The answer is **Yes**.
- (3) ? $p(a) \land q(a)$. The answer is **Yes**.
- (4) ? p(a) or q(a). The answer is **Yes**
- (5) ? p(X). The answer is X = a.

7 Question 7

Compute the answer sets of the following program.

p(a) := not p(b). p(b) := not p(a). q(a). $\neg q(b) := p(X), \text{ not } r(X).$

Recall that you can figure the signature of the program from the program itself. Remember to ground the rules with variables.

Answer:

After grounding the program Π we have

p(a) : - not p(b). p(b) : - not p(a). q(a). $\neg q(b) : - p(a), \text{not } r(a).$ $\neg q(b) : - p(b), \text{not } r(b).$

From the first rule and second rule, we have two answer set $\{p(a)\}$ and $\{p(b)\}$. The third rule is the fact so that it should be in every set. Therefore, we have two answer sets $\{p(a), q(a)\}$ and $\{p(b), q(a)\}$. The program has no rule that supports r(a) or r(b), so every answer set of the program satisfies *not* r(a) and *not* r(b). This means that every answer set that contains p(a) must also contain $\neg q(b)$, and every answer set that contains p(b) must also contain $\neg q(b)$. Thus we have two answer sets

 $\left\{ \begin{aligned} p(a),q(a),\neg q(b) \\ p(b),q(a),\neg q(b) \end{aligned} \right\}$ and