Intelligent System - HW3

Vinh T. Nguyen. Email: vinh.nguyen@ttu.edu

October 12, 2018

1 Question 1

Given the signature $O=\{a\}, F=\{f\}, P=\{p\}$ and $V=\{X\}$, specify which of the following are terms, atom, literals, or none.
(a) a.
(b) $\neg a$
(c) X
(d) Y
(e) $f(X)$
(f) $f(f(X))$
(g) $p(a)$
(h) $p(\neg a)$
(i) $\neg p(a)$

Table 1: Specifying which of the following are terms, atoms, literals, and none

```
Answer:
Terms: \(=\{a, X, f(X), f(f(X))\}\)
Atoms \(:=\{p(a)\}\)
Literals: \(=\{p(a), \neg p(a)\}\)
None: \(=\{\neg a, Y, p(\neg a)\}\)
```


2 Question 2

Given the signature $O=\{a, b\}, F=\{ \}, P=\{p, q\}$ and $V=\{X, Y\}$, what is the grounding of the following program.
$p(X, Y):-q(Y, X)$.

Answer:

$p(a, a):-q(a, a) . \%$ when $X=a, Y=a \%$
$p(a, b):-q(b, a) . \%$ when $X=a, Y=b \%$
$p(b, a):-q(a, b) . \%$ when $X=b, Y=a \%$
$p(b, b):-q(b, b)$. \% when $X=b, Y=b \%$

3 Question 3

(Satisfaction of rules) Given a rule r and S where
r is $q(c)$ or $q(a):-p(a), \neg s(b)$, not $s(a)$, and
$S=\{\neg q(c), p(a), \neg s(b)\}$,
does S satisfy r ? Give detailed explanation.
Answer:
First we check the body of the rule if it is satisfied by S. The body consists of three literals:
$p(a), \neg s(b)$, not $s(a)$.
The first two $(p(a), \neg s(b))$ are satisfied by clause $1(l$ if $l \in S)$.
The later not $s(a)$ is satisfied by clause $2(\operatorname{not} l$ if $l \notin S)$.
Thus the body of the rule is satisfied by S. By clause 5 (rule r if, whenever S satisfies $r^{\prime} s$ body, it satisfies $r^{\prime} s$ head), the head must also be satisfied. However, neither $q(c)$ or $q(a)$ is in S by clause 3 (l_{1} or \ldots or l_{n} if for some $1 \leq i \leq n, l i \in S$). Hence, the rule r is not satisfied by S.

4 Question 4

(Answer set definitions) Explain, in a precise manner, that $S=\{p(b)\}$ is an answer set of the following program:
$p(a):-\operatorname{not} p(b) . \%$ If $p(b)$ does not belong to your set of beliefs, then $p(a)$ must. \%
$p(b):-\operatorname{not} p(a) . \%$ If $p(a)$ does not belong to your set of beliefs, then $p(b)$ must. \%
This answer set supports the second rule, since $p(a)$ is not in the set then $p(b)$ must be in the set.

5 Question 5

State the definition of a program entails a literal. A program Π entails a literal $l(\Pi \mid=l)$ if l belongs to all answer sets of Π

State the definition of answer to a disjunctive query to a program: The answer to a ground disjunctive query, l_{1} or \ldots or l_{n}, where $n \geq 1$, is

- The answer is yes if there exists at least i such that $\Pi \mid=l_{i}$. In other words, there is at least one literal i belongs to all answer set of Π.
- The answer is no if Π entails all negation of literals $\left(\Pi \mid=\left\{\overline{l_{1}}, \ldots, \overline{l_{n}}\right\}\right)$. In other words, all negation of literals belong to all answer set of Π.
- unknown otherwise

Answer:

6 Question 6

(Query Answering) Assume a program Π has one answer set $\{p(a), \neg q(a)\}$. What is the answer to the following queries?.

- (1) ? $p(a)$. The answer is Yes.
- (2) ? $q(a)$. The answer is No.
- (3) ? $p(a) \wedge q(a)$. The answer is No.
- (4)? $p(a)$ or $q(a)$. The answer is Yes
- (5) ? $p(X)$. The answer is $X=a$.

If Π has one more answer set $\{p(a), q(a)\}$, what would be the answer for the queries above?

- (1) ? $p(a)$. The answer is Yes.
- (2) ? $q(a)$. The answer is Yes.
- (3) ? $p(a) \wedge q(a)$. The answer is Yes.
- (4)? $p(a)$ or $q(a)$. The answer is Yes
- (5) ? $p(X)$. The answer is $X=a$.

7 Question 7

Compute the answer sets of the following program.

$$
\begin{aligned}
& p(a):-\operatorname{not} p(b) . \\
& p(b):-\operatorname{not} p(a) . \\
& q(a) . \\
& \neg q(b):-p(X), \operatorname{not} r(X) .
\end{aligned}
$$

Recall that you can figure the the signature of the program from the program itself. Remember to ground the rules with variables.

Answer:

After grounding the program Π we have

$$
\begin{aligned}
& p(a):-\operatorname{not} p(b) . \\
& p(b):-\operatorname{not} p(a) . \\
& q(a) . \\
& \neg q(b):-p(a), \operatorname{not} r(a) . \\
& \neg q(b):-p(b), \operatorname{not} r(b) .
\end{aligned}
$$

From the first rule and second rule, we have two answer set $\{p(a)\}$ and $\{p(b)\}$. The third rule is the fact so that it should be in every set. Therefore, we have two answer sets $\{p(a), q(a)\}$ and $\{p(b), q(a)\}$. The program has no rule that supports $r(a)$ or $r(b)$, so every answer set of the program satisfies not $r(a)$ and not $r(b)$. This means that every answer set that contains $p(a)$ must also contain $\neg q(b)$, and every answer set that contains $p(b)$ must also contain $\neg q(b)$. Thus we have two answer sets
$\left\{\begin{array}{l}p(a), q(a), \neg q(b)\} \text { and } \\ p(b), q(a), \neg q(b)\}\end{array}\right.$

