Theory of Automata - HW2

Vinh T. Nguyen. Email: vinh.nguyen@ttu.edu

October 3, 2018

1 Question 1

For $\sum = \{a, b\}$, construct dfa's that accept the sets consisting of

- (a) all string exactly one a,
- (d) all strings with at least one a and exactly two b's.

Answers: (a) a Dfa that accepts at least one *a*. From initial states, once the Dfa read a string 'a' it will go to final state no matter which characters being read next. The dfa is shown in Fig. 1

Figure 1: A dfa accepts at least one a

Answers: (b) a dfa that accepts at least one a and exactly two b's. The answer is shown in Fig. 2

Figure 2: A dfa accepts at least one a, and exactly two b

Question 3 2

Give a set of notation description of the language accepted by the automaton depicted in the following diagram. Can you think of a simple verbal characterization of the language?.

This dfa accepts any string that contains at least one a and not ending with a.

Question 4 3

Find a dfa for the following language on $\sum = \{a, b\}$. $L = \{w : n_a(w) \mod 3 > 1\}$

The dfa is shown in Fig. 3

Figure 3: A Machine accepts all string with mod 3 > 1

Question 6 4

Design an nfa with no more than five states for the set $\{abab^n : n \ge 0\} \cup \{aba^n : \ge 0\}$. The nfa is shown in Fig. 4

Figure 4: A nfa accepts the set $\{abab^n : n \ge 0\} \cup \{aba^n : \ge 0\}$

5 Question 9

Convert the following nfa into equivalent dfa. The dfa is shown in Fig. 5

Figure 5: Convert nfa into equivalent dfa

6 Question 10 (b)

Find the minimal dfa's for the following languages:

 $L = \{a^{n}b : n \ge 0\} \cup \{b^{n}a : n \ge 1\}$

The first dfa for the language L is shown in Fig.7 (C). The minimal dfa is depicted in 7 (D). Steps to minimize dfa is shown in Fig.6

The answer for this problem is found in Fig. 7 D

Figure 6: Minimal dfa procedures: (a) first scan for all pairs (b-c) repeating steps, (d) final table

Figure 7: (A) $L = a^n b$, (B) $L = b^n a$, (C) Language L, (D) minimal dfa