Theory of Automata - HW2

Vinh T. Nguyen. Email: vinh.nguyen@ttu.edu

October 3, 2018

1 Question 1

For $\sum=\{a, b\}$, construct dfa's that accept the sets consisting of

- (a) all string exactly one a,
- (d) all strings with at least one a and exactly two b 's.

Answers: (a) a Dfa that accepts at least one a. From initial states, once the Dfa read a string 'a' it will go to final state no matter which characters being read next. The dfa is shown in Fig. 1

Figure 1: A dfa accepts at least one a
Answers: (b) a dfa that accepts at least one a and exactly two b 's. The answer is shown in Fig. 2

Figure 2: A dfa accepts at least one a, and exactly two b

2 Question 3

Give a set of notation description of the language accepted by the automaton depicted in the following diagram. Can you think of a simple verbal characterization of the language?.

This dfa accepts any string that contains at least one a and not ending with a.

3 Question 4

Find a dfa for the following language on $\sum=\{a, b\}$.
$L=\left\{w: n_{a}(w) \bmod 3>1\right\}$
The dfa is shown in Fig. 3

Figure 3: A Machine accepts all string with $\bmod 3>1$

4 Question 6

Design an nfa with no more than five states for the set $\left\{a b a b^{n}: n \geq 0\right\} \cup\left\{a b a^{n}: \geq 0\right\}$. The nfa is shown in Fig. 4

Figure 4: A nfa accepts the set $\left\{a b a b^{n}: n \geq 0\right\} \cup\left\{a b a^{n}: \geq 0\right\}$

5 Question 9

Convert the following nfa into equivalent dfa. The dfa is shown in Fig. 5

Figure 5: Convert nfa into equivalent dfa

6 Question 10 (b)

Find the minimal dfa's for the following languages:

$$
L=\left\{a^{n} b: n \geq 0\right\} \cup\left\{b^{n} a: n \geq 1\right\}
$$

The first dfa for the language L is shown in Fig. 7 (C). The minimal dfa is depicted in 7 (D). Steps to minimize dfa is shown in Fig. 6

The answer for this problem is found in Fig. 7 D

(a)

q1	X					
q2	X	X				
q3	X	X	X			
q4		X	X	X		
q5	X	X	X		X	
q6	X	X	X	X	X	X
	q0	q1	q2	q3	q4	q5

(b)

q1	X					
q2	X	X				
q3	X	X	X			
q4	X	X	X	X		
q5	X	X	X		X	
q6	X	X	X	X	X	X
	q0	q1	q2	q3	q4	q5

(c)

q2	X	X				
q3	X	X	X			
q4	X	X	X	X		
q5	X	X	X		X	
q6	X	X	X	X	X	X
	q0	q1	q2	q3	q4	q5

(d)

Figure 6: Minimal dfa procedures: (a) first scan for all pairs (b-c) repeating steps, (d) final table

Figure 7: (A) $L=a^{n} b$, (B) $L=b^{n} a$, (C) Language L , (D) minimal dfa

