Theory of Automata - HW3

Vinh T. Nguyen. Email: vinh.nguyen@ttu.edu

October 7, 2018

1 Question 1

Find all strings in $L\left((a+b)^{*} b(a+a b)^{*}\right)$ of length four.
Answers: We can denote the set of strings as $w_{1} \mathbf{b} w_{2}$ where $\left|w_{1}\right|+\left|w_{2}\right|=3$ and $0 \leq\left|w_{1}\right|,\left|w_{2}\right| \leq$ 3

Case 1: $\left|w_{1}\right|=3,\left|w_{2}\right|=0$. When the machine (M) consumes λ, thus $\left|w_{2}\right|=0$. Since w_{1} can take any values in $\{\mathrm{a}, \mathrm{b}\}$. So we have at most $2^{3}=8$ combinations. $\mathrm{L} 1=\{(\mathrm{aaa}) b \lambda,(\mathrm{aab}) b \lambda$, (aba) $b \lambda,(\mathrm{abb}) b \lambda,(\mathrm{baa}) b \lambda,(\mathrm{bab}) b \lambda,(\mathrm{bba}) b \lambda,(\mathrm{bbb}) b \lambda\}$

Case 2: $\left|w_{1}\right|=2,\left|w_{2}\right|=1$. This is when M consumes only one a. Since w_{1} can take any values in $\{\mathrm{a}, \mathrm{b}\}$. So we have at most $2^{2}=4$ strings. $\mathrm{L} 2=\{$ (aa) $b a$, (ab) $b a$, (ba) $b a$, (bb) $b a\}$

Case 3: $\left|w_{1}\right|=1,\left|w_{2}\right|=2$. When $\left|w_{2}\right|=2$ we have $w_{2}=\{\mathrm{a} \lambda \mathrm{a}, \mathrm{ab}\}$ or $\{\mathrm{aa}, \mathrm{ab}\}$. Since $\left|w_{1}\right|=1$ so w_{1} can be either a or b. We have $2 * 2=4$ strings. $\mathrm{L} 3=\{$ (a) $b(\mathrm{aa}),(\mathrm{b}) b(\mathrm{aa}),(\mathrm{a}) b(\mathrm{ab})$, (b) b (ab) $\}$

Case 4: $\left|w_{1}\right|=0,\left|w_{2}\right|=3$. When $\left|w_{2}\right|=3$ we have $\mathrm{L} 4=\{\operatorname{ba} \lambda \mathrm{a} \lambda \mathrm{a}, \mathrm{b}(\mathrm{ab}) \lambda \mathrm{a}, \mathrm{ba} \lambda(\mathrm{ab})\}$ or $\{$ baaa, baba, baab\}

Final strings by set union of four Ls: $L=L 1 \cup L 2 \cup L 3 \cup L 4=\{$ aaab, aabb, abab, abbb, baab, babb, bbab, bbbb, aaba, abba, baba, bbba, abaa, bbaa, baaa \}

2 Question 2

Find a regular expression for the set $\left\{a^{n} b^{m} \mid(n+m)\right.$ is even $\}$
There are two cases where $n+m$ is even
Case 1: n, m are both even then we can denote $n=2 k, m=2 l$ and $m, n \geq 0$. The regular expression for this case is $(a a)^{*}(b b)^{*}$.

Case 2: n, m are both odd then we can denote $n=2 k+1, m=2 l+1$ and $m, n \geq 0$. The regular expression for this case is $a(a a)^{*} b(b b)^{*}$.

We can build a finite machine M that accepts either Case $\mathbf{1}$ or Case 2. Then the regular expression for this set is: $r=(a a)^{*}(b b)^{*}+a(a a)^{*} b(b b)^{*}$

3 Question 5

Give a regular expression for a language on $\sum=\{a, b, c\}$ that all strings containing no more than three $a^{\prime} s$.

There are three cases when strings contain no more than three $a^{\prime} s$.
Case 1: When the strings contain no a. The machine M can take any string of $\{\mathrm{b}, \mathrm{c}\}$ to go to final state. Thus the regular expression for this case is $(b+c)^{*}$

Case 2: When the strings contain one a. The machine M can take any string of $\{\mathrm{b}, \mathrm{c}\}$ with one a (or one a and any $\{\mathrm{b}, \mathrm{c}\}$ to go to final state. Thus the regular expression for this case is $(b+c)^{*} a(b+c)^{*}$

Case 3: When the strings contain two $a^{\prime} s$. The machine M can take any string of $\{\mathrm{b}, \mathrm{c}\}$ with two $a^{\prime} s$ in any combination to go to final state. Thus the regular expression for this case is $(b+c)^{*} a(b+c)^{*} a(b+c)^{*} a(b+c)^{*}$

We can build a finite machine M that accepts Case 1, Case 2, or Case 3. Thus the regular expression is

$$
r=(b+c)^{*}+(b+c)^{*} a(b+c)^{*}+(b+c)^{*} a(b+c)^{*} a(b+c)^{*} a(b+c)^{*}
$$

4 Question 7

Give a regular expression for L on $\sum=\{a, b\}$ where $L=\left\{w \mid n_{a}(w)\right.$ mode $\left.3=0\right\}$
There are two cases when $n_{a}(w) \bmod 3=0$.
Case 1: When the strings contain no a or $n_{a}(w)=0$. In this case, the regular expression is b^{*}.
Case 2: When the strings contain k times number of $3 a^{\prime} s\left(\bmod 3\right.$ of $\left.n_{a}(w)=0\right)$. The regular expression for strings is $\left(b^{*} a b^{*} a b^{*} a b^{*}\right)^{*}$.

We can build a finite machine M that accepts Case 1, Case 2. Thus the regular expression is $r=b^{*}+\left(b^{*} a b^{*} a b^{*} a b^{*}\right)^{*}$

5 Question 8

Find a dfa that accepts $L\left(a a^{*}+a b a^{*} b^{*}\right)$. The procedure is as follows: (1) Find nfa for $a a^{*}$, (2) Find nfa for $a b a^{*} b^{*}$, (3) Build a transition table for (1) and (2), (4) Build equivalent dfa from transition table, (5) Minimal dfa. The final dfa is shown in Fig. 1

δ	a	b
$q 0$	$[q 1, q 2]$	ϕ
$[q 1, q 2]$	$[q 1]$	$[q 3]$
$[q 1]$	$[q 1]$	ϕ
$[q 3]$	$[q 3]$	$[q 3]$

Figure 1: dfa that accepts $L\left(a a^{*}+a b a^{*} b^{*}\right)$.

6 Question 10

Find a regular expression for the language accepted by the automaton:

Figure 2: Find a regular expression for the language accepted by the automaton
We have two cases:
Case 1 for q1: we have two regular expressions: $a^{*} b(a a)^{*}$ and $a^{*} b a(a a)^{*}$
Case 1 for q2: we have two regular expressions: $a^{*} b a(a a)^{*}$ and $a^{*} b(a a)^{*}$
Set union of Case 1 and Case 2 on $q 1, q 2$ we have $r=a^{*} b(a a)^{*}+a^{*} b a(a a)^{*}=a^{*} b a^{*}$. Since M accepts both odd and even number of a at the end.

Another approach is to find minimal automaton as shown in Fig. 3

Figure 3: Minimal nfa, $r=a^{*} b a^{*}$

7 Question 11

Write a regular expression for the set of all C real numbers. The nfa for set of all C real numbers can be shown in Fig. 4 There are three cases for reaching final states from q0.

Case 1: From $q 0$ to $q 2$. We have the regular expression: $r=("+$ " + " - " $+\lambda) 0$
Case 2: From $q 0$ to $q 4$. We have the regular expression: $r=\left("+{ }^{\prime \prime}+{ }^{\prime \prime}-\right.$ " $\left.+\lambda\right)(1+2+3+4+$ $5+6+7+8+9)(0+1+2+3+4+5+6+7+8+9)^{*}$

Case 3: From $q 0$ to $q 3$. We have two paths: go through $q 4$ and go through $q 2$.
From $q 0$ to $q 3$ through $q 4$ then we have the following expression: $r=("+$ " + " - " $+\lambda)(1+$ $2+3+4+5+6+7+8+9)(0+1+2+3+4+5+6+7+8+9)^{*}\left({ }^{\prime \prime} . \prime\right)(0+1+2+3+4+$ $5+6+7+8+9)(0+1+2+3+4+5+6+7+8+9)^{*}$.

Figure 4: Nfa for C real numbers

From $q 0$ to $q 3$ through $q 2$ then we have the following expression: $r=($ " + " + " - " $+\lambda) 0($ "." $)(0+$ $1+2+3+4+5+6+7+8+9)(0+1+2+3+4+5+6+7+8+9)^{*}$

Final regular expression is: $r=\left({ }^{\prime \prime}+{ }^{\prime \prime}+{ }^{\prime \prime}-{ }^{\prime \prime}+\lambda\right) 0+\left({ }^{\prime}+{ }^{\prime \prime}+{ }^{\prime \prime}-\right.$ " $\left.+\lambda\right)(1+2+3+4+5+6+7+$ $8+9)(0+1+2+3+4+5+6+7+8+9)^{*}+\left({ }^{\prime \prime}+^{\prime \prime}+"-{ }^{\prime \prime}+\lambda\right)(1+2+3+4+5+6+7+8+9)(0+1+$ $2+3+4+5+6+7+8+9)^{*}\left({ }^{\prime}\right.$. ." $)(0+1+2+3+4+5+6+7+8+9)(0+1+2+3+4+5+6+7+8+$ $9)^{*}+\left("+{ }^{\prime \prime}+"-"+\lambda\right) 0\left({ }^{\prime \prime} . "\right)(0+1+2+3+4+5+6+7+8+9)(0+1+2+3+4+5+6+7+8+9)^{*}$

8 Question 13

Construct right and left linear grammars for the language $L=\left\{a^{n} b^{m} \mid n \geq 2, m \geq 3\right\}$
The right linear grammar $\left.G_{R}=(\{S, S 1, S 2, S 3\},\{a, b\}, S, P\}\right)$ with productions $\mathrm{P}: S \rightarrow$ $a a S 1, S 1 \rightarrow a S 1|S 2, S 2 \rightarrow b b b S 3, S 3 \rightarrow b S 3| \lambda$

The left linear grammar $\left.G_{L}=(\{S, S 1, S 2, S 3\},\{a, b\}, S, P\}\right)$ with productions P: $S \rightarrow$ $S 1 b b b, S 1 \rightarrow S 1 b|S 2, S 2 \rightarrow S 3 a a, S 3 \rightarrow S 2 a| \lambda$

9 Question 15

Find a regular grammar that generates the set of all C real numbers. Based on what we've constructed for regular expression in Fig. 4. We can construct regular grammar as follows:

```
\(G=(\{S, S 1, S 2, S 3, S 4\},\{+,-, ., 0,1,2,3,4,5,6,7,8,9\}, S, P\})\)
\(S \rightarrow \lambda S 1|+S 1|-S 1\)
\(S 1 \rightarrow 0 S 2 \mid(1+2+3+4+5+6+7+8+9) S 4\)
\(S 2 \rightarrow . S 3 \mid \lambda\)
\(S 3 \rightarrow(0+1+2+3++4+5+6+7+8+9) S 3 \mid \lambda\)
\(S 4 \rightarrow(0+1+2+3+4+5+6+7+8+9) S 4|\cdot S 3| \lambda\)
```

