Theory of Automata - HW3

Vinh T. Nguyen. Email: vinh.nguyen@ttu.edu

October 7, 2018

1 Question 1

Find all strings in L((a+b)*b(a+ab)*) of length four.

Answers: We can denote the set of strings as $w_1 b w_2$ where $|w_1| + |w_2| = 3$ and $0 \le |w_1|, |w_2| \le 3$

Case 1: $|w_1| = 3$, $|w_2| = 0$. When the machine (M) consumes λ , thus $|w_2| = 0$. Since w_1 can take any values in $\{a,b\}$. So we have at most $2^3 = 8$ combinations. L1 = $\{(aaa)b\lambda, (aab)b\lambda, (aab)b\lambda, (aba)b\lambda, (bba)b\lambda, (bba)b\lambda \}$

Case 2: $|w_1| = 2$, $|w_2| = 1$. This is when M consumes only one *a*. Since w_1 can take any values in $\{a,b\}$. So we have at most $2^2 = 4$ strings. L2 = $\{(aa)ba, (ab)ba, (ba)ba, (bb)ba\}$

Case 3: $|w_1| = 1, |w_2| = 2$. When $|w_2| = 2$ we have $w_2 = \{a\lambda a, ab\}$ or $\{aa, ab\}$. Since $|w_1| = 1$ so w_1 can be either *a* or *b*. We have 2 * 2 = 4 strings. L3 = $\{(a)b(aa), (b)b(aa), (a)b(ab), (b)b(ab)\}$

Case 4: $|w_1| = 0$, $|w_2| = 3$. When $|w_2| = 3$ we have L4 = $\{ ba \lambda a \lambda a, b(ab) \lambda a, ba \lambda(ab) \}$ or $\{ baaa, baba, baab \}$

Final strings by set union of four Ls: $L = L1 \cup L2 \cup L3 \cup L4 = \{aaab, aabb, abab, abbb, abab, abba, abba, abba, abba, abaa, abaa, abba, abaa, abba, abaa, abaa, abba, abaa, abaa, abba, abaa, abba,$

2 Question 2

Find a regular expression for the set $\{a^n b^m | (n+m) \text{ is even }\}$

There are two cases where n + m is even

Case 1: n, m are both even then we can denote n = 2k, m = 2l and $m, n \ge 0$. The regular expression for this case is $(aa)^*(bb)^*$.

Case 2: n, m are both odd then we can denote n = 2k + 1, m = 2l + 1 and $m, n \ge 0$. The regular expression for this case is $a(aa)^*b(bb)^*$.

We can build a finite machine M that accepts either Case 1 or Case 2. Then the regular expression for this set is: $r = (aa)^*(bb)^* + a(aa)^*b(bb)^*$

3 Question 5

Give a regular expression for a language on $\sum = \{a, b, c\}$ that all strings containing no more than three a's.

There are three cases when strings contain no more than three a's.

Case 1: When the strings contain no *a*. The machine M can take any string of $\{b, c\}$ to go to final state. Thus the regular expression for this case is $(b + c)^*$

Case 2: When the strings contain one *a*. The machine M can take any string of $\{b, c\}$ with one *a* (or one *a* and any $\{b, c\}$ to go to final state. Thus the regular expression for this case is $(b+c)^*a(b+c)^*$

Case 3: When the strings contain two a's. The machine M can take any string of $\{b, c\}$ with two a's in any combination to go to final state. Thus the regular expression for this case is $(b+c)^*a(b+c)^*a(b+c)^*a(b+c)^*$

We can build a finite machine M that accepts Case 1, Case 2, or Case 3. Thus the regular expression is

 $r = (b+c)^* + (b+c)^* a(b+c)^* + (b+c)^* a(b+c)^* a(b+c$

4 Question 7

Give a regular expression for L on $\sum = \{a, b\}$ where $L = \{w | n_a(w) \text{ mode } 3 = 0\}$ There are two cases when $n_a(w) \mod 3 = 0$.

Case 1: When the strings contain no a or $n_a(w) = 0$. In this case, the regular expression is b^* .

Case 2: When the strings contain k times number of 3 $a's \pmod{3}$ of $n_a(w) = 0$). The regular expression for strings is $(b^*ab^*ab^*ab^*)^*$.

We can build a finite machine M that accepts Case 1, Case 2. Thus the regular expression is $r = b^* + (b^*ab^*ab^*ab^*)^*$

5 Question 8

Find a dfa that accepts $L(aa^* + aba^*b^*)$. The procedure is as follows: (1) Find nfa for aa^* , (2) Find nfa for aba^*b^* , (3) Build a transition table for (1) and (2), (4) Build equivalent dfa from transition table, (5) Minimal dfa. The final dfa is shown in Fig. 1

Figure 1: dfa that accepts $L(aa^* + aba^*b^*)$.

6 Question 10

Find a regular expression for the language accepted by the automaton:

Figure 2: Find a regular expression for the language accepted by the automaton

We have two cases:

Case 1 for q1: we have two regular expressions: $a^*b(aa)^*$ and $a^*ba(aa)^*$

Case 1 for q2: we have two regular expressions: $a^*ba(aa)^*$ and $a^*b(aa)^*$

Set union of Case 1 and Case 2 on q1, q2 we have $r = a^*b(aa)^* + a^*ba(aa)^* = a^*ba^*$. Since M accepts both odd and even number of a at the end.

Another approach is to find minimal automaton as shown in Fig.3

Figure 3: Minimal nfa, $r = a^*ba^*$

7 Question 11

Write a regular expression for the set of all C real numbers. The nfa for set of all C real numbers can be shown in Fig. 4 There are three cases for reaching final states from q0.

Case 1: From q0 to q2. We have the regular expression: $r = ("+"+"-"+\lambda)0$

Case 2: From q0 to q4. We have the regular expression: $r = ("+"+"-"+\lambda)(1+2+3+4+5+6+7+8+9)(0+1+2+3+4+5+6+7+8+9)^*$

Case 3: From q0 to q3. We have two paths: go through q4 and go through q2.

Figure 4: Nfa for C real numbers

From q0 to q3 through q2 then we have the following expression: $r = ("+"+"-"+\lambda)0(".")(0+1+2+3+4+5+6+7+8+9)(0+1+2+3+4+5+6+7+8+9)^*$

Final regular expression is: $r = ("+"+"-"+\lambda)0 + ("+"+"-"+\lambda)(1+2+3+4+5+6+7+8+9)(0+1+2+3+4+5+6+7+8+9)* + ("+"+"-"+\lambda)(1+2+3+4+5+6+7+8+9)(0+1+2+3+4+5+6+7+8+9)$

8 Question 13

Construct right and left linear grammars for the language $L = \{a^n b^m | n \ge 2, m \ge 3\}$

The right linear grammar $G_R = (\{S, S1, S2, S3\}, \{a, b\}, S, P\})$ with productions P: $S \rightarrow aaS1, S1 \rightarrow aS1|S2, S2 \rightarrow bbbS3, S3 \rightarrow bS3|\lambda$

The left linear grammar $G_L = (\{S, S1, S2, S3\}, \{a, b\}, S, P\})$ with productions P: $S \rightarrow S1bbb, S1 \rightarrow S1b|S2, S2 \rightarrow S3aa, S3 \rightarrow S2a|\lambda$

9 Question 15

Find a regular grammar that generates the set of all C real numbers. Based on what we've constructed for regular expression in Fig. 4. We can construct regular grammar as follows:

 $G = (\{S, S1, S2, S3, S4\}, \{+, -, ., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}, S, P\})$ $S \to \lambda S1| + S1| - S1$ $S1 \to 0S2|(1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9)S4$ $S2 \to .S3|\lambda$ $S3 \to (0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9)S3|\lambda$ $S4 \to (0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9)S4|.S3|\lambda$